An Improved Genetic Algorithm Performance with Benchmark Functions
نویسندگان
چکیده
In a recent paper [1], it was shown that a new Genetic Algorithm (GA) performed better than basic GA. In the present paper, we will focus an Improved Genetic Algorithm which uses the theory of cosets. The new technique was tested using some benchmark functions [2] which the basic GA performance was not good enough. The main purpose of this paper is to suggest how to use Linear Codes properties to guide the GA search.
منابع مشابه
An Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملOPTIMAL SENSOR PLACEMENT FOR MODAL IDENTIFICATION OF A STRAP-BRACED COLD FORMED STEEL FRAME BASED ON IMPROVED GENETIC ALGORITHM
This paper is concerned with the determination of optimal sensor locations for structural modal identification in a strap-braced cold formed steel frame based on an improved genetic algorithm (IGA). Six different optimal sensor placement performance indices have been taken as the fitness functions two based on modal assurance criterion (MAC), two based on maximization of the determinant of a Fi...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملTuning of fuzzy logic controller using an improved black hole algorithm for maximizing power capture of ocean wave energy converters
Seas and oceans are the most important sources of renewable energy in the world. The main purpose of this paper is to use an appropriate control strategy to improve the performance of point absorbers. In this scheme, considering the high uncertainty in the parameters of the power take-off system in different atmospheric conditions, a new improved black hole algorithm is introduced to tune fuzzy...
متن کاملAn Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with Sequence Dependent Setup Times and Processor Blocking
Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup times a...
متن کامل